Shelling the coset poset

نویسنده

  • Russell Woodroofe
چکیده

It is shown that the coset lattice of a finite group has shellable order complex if and only if the group is complemented. Furthermore, the coset lattice is shown to have a Cohen–Macaulay order complex in exactly the same conditions. The group theoretical tools used are relatively elementary, and avoid the classification of finite simple groups and of minimal finite simple groups. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the shelling antimatroids of split graphs

Chordal graph shelling antimatroids have received little attention with regard to their combinatorial properties and related optimization problems, as compared to the case of poset shelling antimatroids. Here we consider a special case of these antimatroids, namely the split graph shelling antimatroids. We show that the feasible sets of such an antimatroid relate to some poset shelling antimatr...

متن کامل

Lexicographic shellability of partial involutions

In this manuscript we study inclusion posets of Borel orbit closures on (symmetric) matrices. In particular, we show that the Bruhat poset of partial involutions is a lexicographically shellable poset. We determine which subintervals of the Bruhat posets are Eulerian, and moreover, by studying certain embeddings of the symmetric groups and their involutions into rook matrices and partial involu...

متن کامل

A single-element extension of antimatroids

An antimatroid is a family of sets which is accessible, closed under union, and includes an empty set. A number of examples of antimatroids arise from various kinds of shellings and searches on combinatorial objects, such as, edge=node shelling of trees, poset shelling, node-search on graphs, etc. (Discrete Math. 78 (1989) 223; Geom. Dedicata 19 (1985) 247; Greedoids, Springer, Berlin, 1980) [1...

متن کامل

Signed Posets

We define a new object, called a signed poset, that bears the same relation to the hyperoctahedral group B n (i.e., signed permutations on n letters), as do posets to the symmetric group S n. We then prove hyperoctahedral analogues of the following results: (1) the generating function results from the theory of P-partitions; (2) the fundamental theorem of finite distributive lattices (or Birkho...

متن کامل

The Coset Poset and Probabilistic Zeta Function of a Finite Group

For a finite group G and a non-negative integer s, let P(G,s) be the probability that a randomly chosen s-tuple generates G. Philip Hall gave an explicit formula for P(G,s), exhibiting the latter as a finite Dirichlet series. One can therefore speak of P(G,s) for an arbitrary complex number s. The reciprocal of this function of s is called the zeta function of G. The present work arose from an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2007